Optimal relaxation parameters of DRAMA (dynamic RAMLA) aiming at one-pass image reconstruction for 3D-PET.
نویسندگان
چکیده
We have reported a block-iterative algorithm named DRAMA for image reconstruction for emission tomography (Tanaka and Kudo 2003 Phys. Med. Biol. 48 1405-22). DRAMA is a modified version of the row-action maximum likelihood algorithm (RAMLA), in which the relaxation parameter is subset dependent and is changed in such a way that the noise propagation from subsets to the reconstructed image is substantially independent of the access order of the subsets. The algorithm provides fast convergence with a reasonable signal-to-noise ratio. The optimal relaxation parameter has been derived assuming a two-dimensional (2D)-PET model, and detailed performance in three-dimensional (3D) reconstruction has not been clear enough. We have developed the new version 'DRAMA-3D', based on the 3D-PET model. The optimal relaxation parameter is a function of the access order of the subsets and the ring difference, and its value is determined by simple formulas from the design parameters of the PET scanner, the operating conditions and the post-smoothing resolution. In this paper, we present the theory of DRAMA-3D, the results of simulation studies on the performance of DRAMA-3D and the comparative studies of the related algorithms. It is shown that DRAMA-3D is robust for various access orders of subsets and is suitable to realize one-pass (single-iteration) reconstruction.
منابع مشابه
[Quantitative evaluation of block-iterative reconstruction image in PET: comparison of the dynamic RAMLA algorithm and OSEM algorithm].
PURPOSE Iterative reconstruction has been successfully used in whole-body PET imaging because of reductions in noise and scanning time. However, there are plural algorithms for image reconstruction such as OSEM, RAMLA and Dynamic RAMLA. Dynamic RAMLA (DRAMA) is an iterative algorithm similar to RAMLA, but the relaxation parameter is controlled in such a way that the propagation of noise from pr...
متن کاملImpact of time-of-flight on qualitative and quantitative analyses of myocardial perfusion PET studies using 13N-ammonia
BACKGROUND The impact of time-of-flight (TOF) in myocardial perfusion (13)N-ammonia positron emission tomography (PET) is unclear. METHODS AND RESULTS Twenty consecutive subjects underwent rest and adenosine stress (13)N-ammonia myocardial perfusion PET. Two sets of images were reconstructed using TOF-ordered subset expectation maximization (TOF-OSEM) and 3-dimensional row-action maximum like...
متن کاملPerformance Evaluation of FBP Reconstruction in SPECT Imaging
Introduction: The purpose of this study is to define the optimal parameters for the tomographic reconstruction procedure in a routine single photon emission tomography. The Hoffman brain phantom is modified to evaluate the reconstruction method. The phantom was imaged in a 3 and 2-dimensional conformation and the results were compared. Materials and Methods: The 2D phant...
متن کاملEffect of Post-Reconstruction Gaussian Filtering on Image Quality and Myocardial Blood Flow Measurement with N-13 Ammonia PET
Objective(s): In order to evaluate the effect of post-reconstruction Gaussian filtering on image quality and myocardial blood flow (MBF) measurement by dynamic N-13 ammonia positron emission tomography (PET), we compared various reconstruction and filtering methods with image characteristics. Methods: Dynamic PET images of three patients with coronary artery disease (male-female ratio of 2:1; a...
متن کاملEdge Artifacts in Point Spread Function-based PET Reconstruction in Relation to Object Size and Reconstruction Parameters
Objective(s): We evaluated edge artifacts in relation to phantom diameter and reconstruction parameters in point spread function (PSF)-based positron emission tomography (PET) image reconstruction.Methods: PET data were acquired from an original cone-shaped phantom filled with 18F solution (21.9 kBq/mL) for 10 min using a Biograph mCT scanner. The images were reconstructed using the baseline or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 55 10 شماره
صفحات -
تاریخ انتشار 2010